Abstract

We study discrete symmetries of Dijkgraaf-Witten theories and their gauging in the framework of (extended) functorial quantum field theory. Non-abelian group cohomology is used to describe discrete symmetries and we derive concrete conditions for such a symmetry to admit 't Hooft anomalies in terms of the Lyndon-Hochschild-Serre spectral sequence. We give an explicit realization of a discrete gauge theory with 't Hooft anomaly as a state on the boundary of a higher-dimensional Dijkgraaf-Witten theory. This allows us to calculate the 2-cocycle twisting the projective representation of physical symmetries via transgression. We present a general discussion of the bulk-boundary correspondence at the level of partition functions and state spaces, which we make explicit for discrete gauge theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.