Abstract

High-temperature superconducting (HTS) generators offer the advantages of high efficiencies and increased power densities. Most superconducting generator designs feature DC field windings to provide the required magnetomotive force. The superconducting field windings in HTS machines are subject to complex magnetic fields, which lead to dynamic losses occurring in the winding. This magnetic field environment has a large DC background component due to the self-field of the superconducting field windings. This paper investigates the dynamic loss in combination with a DC background field using a T – formulation based numerical model, where the dynamic region is used to identify the dynamic loss. Our double claw pole generator design, which offers a high power density at low superconducting tape requirements, is used as a case study for dynamic loss analysis with a DC background field. Results show that DC background field has a strong effect on the dynamic loss due to the reduced critical current. In addition it was shown that the T – formulation based numerical model in conjunction with the dynamic region requires further research to accurately predict the dynamic loss due to the changing DC current transport region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.