Abstract
The tensor low-rank prior has attracted considerable attention in dynamic MR reconstruction. Tensor low-rank methods preserve the inherent high-dimensional structure of data, allowing for improved extraction and utilization of intrinsic low-rank characteristics. However, most current methods are still confined to utilizing low-rank structures either in the image domain or predefined transformed domains. Designing an optimal transformation adaptable to dynamic MRI reconstruction through manual efforts is inherently challenging. In this paper, we propose a deep unrolling network that utilizes the convolutional neural network (CNN) to adaptively learn the transformed domain for leveraging tensor low-rank priors. Under the supervised mechanism, the learning of the tensor low-rank domain is directly guided by the reconstruction accuracy. Specifically, we generalize the traditional t-SVD to a transformed version based on arbitrary high-dimensional unitary transformations and introduce a novel unitary transformed tensor nuclear norm (UTNN). Subsequently, we present a dynamic MRI reconstruction model based on UTNN and devise an efficient iterative optimization algorithm using ADMM, which is finally unfolded into the proposed T2LR-Net. Experiments on two dynamic cardiac MRI datasets demonstrate that T2LR-Net outperforms the state-of-the-art optimization-based and unrolling network-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.