Abstract
We ask the question of classical super (non-)Abelian T-duality for BTZ black hole metric coupling to two fermionic fields. Our approach is based on super Poisson-Lie (PL) T-duality in the presence of spectator fields. In order to study the Abelian T-duality of the metric we dualize over the Abelian Lie supergroups of the types (1|2) and (2|2), in such a way that it is shown that both original and dual backgrounds of the models are conformally invariant up to one-loop order in the presence of field strength. Then, we study the non-Abelian T-duality of the BTZ vacuum metric coupling to two fermionic fields. The dualizing is performed on some non-Abelian Lie supergroups of the type (2|2), in such a way that we are dealing with semi-Abelian superdoubles which are non-isomorphic as Lie superalgebras in each of the models. In the non-Abelian T-duality case, it is interesting to mention that the models can be conformally invariant up to one-loop order in both cases of the absence and presence of field strength. In addition, starting from the decomposition of semi-Abelian Drinfeld superdoubles generated by some of the C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{C} $$\\end{document}3 ⨁ A\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{A} $$\\end{document}1,1 Lie superbialgebras we study the super PL T-plurality of the BTZ vacuum metric coupled to two fermionic fields. However, our findings are interesting in themselves, but at a constructive level, can prompt many new insights into supergravity and manifestly have interesting mathematical relationships with double field theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.