Abstract

The immune system uses much of the classic machinery of cell biology, but in ways that put a different spin on organization and function. Striking recent examples include the demonstration of intraflagellar transport protein and hedgehog contributions to the immune synapse, even though immune cells lack a primary cilium that would be the typical setting for this machinery. In a second example, lymphocytes have their own subfamily of integrins, the β2 subfamily, and only integrins in this family form a stable adhesion ring using freely mobile ligands, a key feature of the immunological synapse. Finally, we showed recently that T-cells use endosomal sorting complexes required for transport (ESCRTs) at the plasma membrane to generate T-cell antigen receptor–enriched microvesicles. It is unusual for the ESCRT pathway to operate at the plasma membrane, but this may allow a novel form of cell–cell communication by providing a multivalent ligand for major histocompatibility complex–peptide complexes and perhaps other receptors on the partnering B-cell. Immune cells are thus an exciting system for novel cell biology even with classical pathways that have been studied extensively in other cell types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call