Abstract

Data on the impact of biological therapies on the T-cell phenotype in rheumatoid arthritis are limited. Here, we prospectively measured the percentages of 15 circulating T-cell subtypes using flow cytometry. We obtained transversal and longitudinal data in 30 anti-TNF responders, 19 secondary anti-TNF nonresponders, and 43 IL-6R antagonist responders, before, 8 weeks and at least 6 months after biological therapy. Untreated RA patients and healthy controls were also included. The important findings are the following: (1) the proportion of regulatory T-cells (Tregs) which are decreased in untreated RA patients becomes normal in all long-term-treated groups; (2) in anti-TNF responders as well as in nonresponders, the frequencies of naïve CD4+ and CD8+ cells are lower, whereas those of proinflammatory Th1, Th2, and Th17 cells and HLA-DR+-activated cells are higher than those in untreated RA or healthy controls; (3) in IL-6R responders, Th1 proportion is decreased, while that of Th2 and Th17 is increased as compared to that in anti-TNF-treated patients and controls; (4) pending confirmation, a CD4CD69 ratio < 2.43 at baseline, could be useful to predict a good therapeutic response to anti-TNF therapy. This study provides comprehensive information regarding the long-term impacts of those biological therapies on the ecotaxis of T-cells in RA. The ClinicalTrials.gov registration number of our study is NCT03266822.

Highlights

  • Rheumatoid arthritis (RA) is the most common chronic autoimmune joint disease, which leads to progressive articular destruction without treatment [1]

  • Fewer interleukin-6 receptor (IL-6R) responders took traditional DMARDs than the anti-tumor necrosis factor-α (TNF)-treated patients, and the proportion of anticitrullinated peptide antibody- (ACPA-) positive patients was lower in the IL-6R blocker-treated group

  • Our results present a comprehensive overview of the alterations in the composition of the T-cell subset in RA patients on long-term anti-TNF or IL-6R blocker therapy with a focus on changes in the naive/memory subtypes, the most important effector pathways (Th1, Th2, Th17, and that of regulatoryT-cells (Treg)), as well as various activation markers (CD25, CD69, and HLA-DR)

Read more

Summary

Introduction

Rheumatoid arthritis (RA) is the most common chronic autoimmune joint disease, which leads to progressive articular destruction without treatment [1]. The abnormal function of CD4+ and CD8+ cells plays a key role in the autoimmune process leading to the development of RA. This is reflected by a number of observations indicating that the proportion of different CD4+ subsets responsible for the harmonized immune response is skewed to a proinflammatory direction. Few studies, including our previous examinations [7], followed T-cell subset prevalence changes, but in most of them, only short-term follow-up was evaluated [8,9,10,11,12,13,14,15]. Data on the effects of IL-6R blocker therapy are especially limited [16,17,18]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call