Abstract

T-cell receptors (TCRs) are created by a stochastic gene rearrangement process during thymocyte development, generating thymocytes bearing useful, as well as unwanted, specificities. Within the latter group, autoreactive thymocytes arise which are subsequently eliminated via a thymocyte-specific apoptotic mechanism, termed negative selection. The molecular basis of this deletion is unknown. Here, we show that TCR triggering by peptide/MHC ligands activates a caspase in double-positive (DP) CD4+ CD8+ thymocytes, resulting in their death. Inhibition of this enzymatic activity prevents antigen-induced death of DP thymocytes in fetal thymic organ culture (FTOC) from TCR transgenic mice as well as apoptosis induced by anti-CD3epsilon monoclonal antibody and corticosteroids in FTOC of normal C57BL/6 mice. Hence, a common caspase mediates immature thymocyte susceptibility to cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.