Abstract

T cell receptor recognition of peptide/MHC has been described as proceeding through a "two-step" process in which the TCR first contacts the MHC molecule prior to formation of the binding transition state using the germline-encoded CDR1 and CDR2 loops. The receptor then contacts the peptide using the hypervariable CDR3 loops as the transition state decays to the bound state. The model subdivides TCR binding into peptide-independent and peptide-dependent steps, demarcated at the binding transition state. Investigating the two-step model, here we show that two TCRs that recognize the same peptide/MHC bury very similar amounts of solvent-accessible surface area in their transition states. However, 1300-1500 A2 of surface area is buried in each, a significant amount suggestive of participation of peptide and associated CDR3 surface. Consistent with this interpretation, analysis of peptide and TCR variants indicates that stabilizing contacts to the peptide are formed within both transition states. These data are incompatible with the original two-step model, as are transition state models built using the principle of minimal frustration commonly employed in the investigation of protein folding and binding transition states. These findings will be useful in further explorations of the nature of TCR binding transition states, as well as ongoing efforts to understand the mechanisms by which T cell receptors recognize the composite peptide/MHC surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.