Abstract

Despite the significant advancements in cancer treatment brought by immune checkpoint inhibitors (ICIs), their effectiveness in treating glioblastoma (GBM) remains highly dissatisfactory. Immunotherapy relies on the fundamental concept of T cell-mediated tumor killing (TTK). Nevertheless, additional investigation is required to explore its potential in prognostic prediction and regulation of tumor microenvironment (TME) in GBM. TTK sensitivity related genes (referred to as GSTTKs) were obtained from the TISIDB. The training cohort was available from the TCGA-GBM, while the independent validation group was gathered from GEO database. Firstly, we examined differentially expressed GSTTKs (DEGs) with limma package. Afterward, the prognostic DEGs were identified and the TTK signature was established with univariate and LASSO Cox analyses. Next, we examined the correlation between the TTK signature and outcome of GBM as well as immune phenotypes of TME. Furthermore, the evaluation of TTK signature in predicting the effectiveness of immunotherapy has also been conducted. We successfully developed a TTK signature with an independent predictive value. Patients who had a high score experienced a worse prognosis compared to patients with low scores. The TTK signature showed a strong positive association with the infiltration degree of immunocyte and the presence of various immune checkpoints. Moreover, individuals with a lower score exhibited increased responsiveness to ICIs and experienced improved prognosis. In conclusions, we successfully developed and verified a TTK signature that has the ability to predict the outcome and immune characteristics of GBM. Furthermore, the TTK signature has the potential to direct the personalized immunotherapy for GBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call