Abstract

Bone resorption is regulated by the immune system, where T-cell expression of RANKL (receptor activator of nuclear factor (NF)-kappaB ligand), a member of the tumour-necrosis factor family that is essential for osteoclastogenesis, may contribute to pathological conditions, such as autoimmune arthritis. However, whether activated T cells maintain bone homeostasis by counterbalancing the action of RANKL remains unknown. Here we show that T-cell production of interferon (IFN)-gamma strongly suppresses osteoclastogenesis by interfering with the RANKL-RANK signalling pathway. IFN-gamma induces rapid degradation of the RANK adapter protein, TRAF6 (tumour necrosis factor receptor-associated factor 6), which results in strong inhibition of the RANKL-induced activation of the transcription factor NF-kappaB and JNK. This inhibition of osteoclastogenesis is rescued by overexpressing TRAF6 in precursor cells, which indicates that TRAF6 is the target critical for the IFN-gamma action. Furthermore, we provide evidence that the accelerated degradation of TRAF6 requires both its ubiquitination, which is initiated by RANKL, and IFN-gamma-induced activation of the ubiquitin-proteasome system. Our study shows that there is cross-talk between the tumour necrosis factor and IFN families of cytokines, through which IFN-gamma provides a negative link between T-cell activation and bone resorption. Our results may offer a therapeutic approach to treat the inflammation-induced tissue breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.