Abstract

To provide an intermediate step between classic arthritis models and clinical trials, the rheumatoid arthritis (RA) synovium SCID mouse model is a valuable tool for use during preclinical research. We undertook this study to investigate the validity of this humanized mouse model using anti-tumor necrosis factor (anti-TNF) and anti-interleukin-1 (anti-IL-1) treatment and to investigate the direct effect of T cells- and B cell-related therapies on the transplanted RA synovial tissue. CB17/SCID mice were engrafted with human RA synovial tissue and systemically treated with anti-TNF, anti-IL-1, anti-IL-17, CTLA-4Ig, anti-CD20, or isotype control antibodies. Validation of the model with anti-TNF treatment significantly reduced serum cytokine levels and decreased histologic inflammation, whereas anti-IL-1 therapy did not show any effect on the RA synovial grafts. In mice engrafted with B cell-rich synovial tissue, anti-CD20 treatment showed clear therapeutic effects. Surprisingly, CTLA-4Ig treatment did not show any effects in this transplantation model, despite prescreening of the synovial tissue for the presence of CD3+ T cells and the costimulatory molecules CD80 and CD86. In contrast, great therapeutic potential was observed for anti-IL-17 treatment, but only when CD3+ T cells were abundantly present in the RA synovial tissue. This human RA synovium SCID mouse model enabled us to show that CTLA-4Ig lacks direct effects on T cell activation processes in the synovial tissue. Further evidence was obtained that IL-17 might indeed be an interesting therapeutic target in RA patients with CD3-rich synovial tissue. Further characterization of the RA patients' individual synovial profiles is of great importance for achieving tailored therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call