Abstract
The T-cell dependency of B-cell responses to variant surface glycoprotein (VSG) epitopes exposed in their native surface conformation on Trypanosoma brucei rhodesiense clone LouTat 1 was investigated. T-cell requirements were examined by analyses of gamma globulin preparations derived from trypanosome-infected BALB/c nude (nu/nu) and thymus-intact (nu/+) mice. A radioimmunoassay was used to selectively quantitate antibody binding to native VSG 1 epitopes present on the surface of viable trypanosomes. Such analyses of VSG-specific antibody in infected mice demonstrated that in the absence of T cells there was a significant B-cell response to exposed VSG epitopes; however, in the presence of T cells these surface epitope-specific responses were greatly enhanced. In contrast to infection, immunization of mice with purified VSG 1 or paraformaldehyde-fixed parasites elicited significant VSG surface epitope-specific responses only in the presence of T cells (i.e., in nu/+ mice only). VSG-specific antibody responses in mice infected with three other clonal T. brucei rhodesiense populations (LouTat 1.2, 1.5, and 1.9) were found to be similar in this pattern, although not identical, to the anti-LouTat 1 responses. An important exception was that mice infected with LouTat 1.8 required T cells to produce VSG surface-specific antibody. Thus, the VSG surface epitope-specific B-cell responses in trypanosome-infected mice represent composite T-cell-independent and T-cell-dependent processes, and a significantly stronger response is made in the presence of T cells. However, immunization with VSG in the absence of infection elicited only T-cell-dependent responses. Since the relative contribution of T-cell-independent and T-cell-dependent processes to the total VSG-specific antibody produced during infection was variable (as seen with the absence of a T-cell-independent response to LouTat 1.8), this may reflect differences in the primary structure or display of VSG molecules on the trypanosome membrane or may represent active parasite interference with some epitope-specific B-cell responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.