Abstract

T-cell immunoglobulin mucin (TIM)-3 is an important member of the TIM gene family, which was thought to contribute to the progression of numerous types of cancer, including hepatocellular carcinoma (HCC); however, the mechanism underlying TIM-3 functions in HCC progression has not yet been extensively investigated. The present study aimed to investigate the function of TIM-3 in the metastasis of HCC and to determine whether the alteration of TIM-3 expression levels regulated the epithelial-mesenchymal transition (EMT) occurrence of HCC, using epithelial (E)-cadherin, neuronal (N)-cadherin, matrix metallopeptidase-9 (MMP-9), Twist 1, Slug, Snail, and Smad as EMT biomarkers. The results demonstrated that upregulation of TIM-3 using TIM-3 lentiviral activation particles (5 µl) increased cell migration and invasion, which was decreased in TIM-3 short interfering RNA-infected cells (10 µM, 3 µl) correspondingly. SMMC-7721 HCC cells were used as the control. EMT was aggravated in TIM-3 upregulated SMMC-7721 cells, which was attenuated in the TIM-3 interference group, accompanied by an alteration of E-cadherin, N-cadherin, MMP-9, Twist 1, Slug, Snail and Smad expression levels. The data presented suggests that TIM-3 serves an essential role in the metastasis of HCC, the mechanism of which was associated with EMT occurrence. Interference of TIM-3 is expected to be an effective means to prevent and control EMT, and further the metastasis of HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.