Abstract

T2D4 murine T hybridoma cells have previously been shown to express Fc receptors (FcR) for IgG (Fc gamma R) and for IgA (Fc alpha R) and to produce an IgG binding factor (IgGBF) that suppresses IgG and IgM responses. In the present work we report on the behavior of IgA bound to T2D4 cells and on the production of IgA binding factor (IgABF) and its ability to suppress IgA antibody production. A dose-dependent binding of MOPC315 IgA with anti-TNP activity by T2D4 cells was demonstrated by rosette formation with trinitrophenylated ox red blood cells (TNP-ORBC) and fixation of iodinated DNP-BSA. IgA bound to the cells disappeared after a short-term culture of 3 hr at 37 degrees C, but not at 4 degrees C. Because this phenomenon was inhibited by 0.1% sodium azide and 100 microM dansylcadaverine, a transglutaminase inhibitor, Fc alpha R-IgA complexes seemed to be released by an active process involving receptor movement. In the culture supernatant of IgA-treated T2D4 cells, we detected a factor(s) that binds to IgA-Sepharose and competitively inhibits the binding of IgA to T2D4 cells. The factor (IgABF) failed to inhibit the rosette formation of Fc gamma R(+) cells with IgG-sensitized ORBC (EAox gamma), indicating that it binds specifically to IgA. IgABF was undetectable in the culture supernatants of untreated T2D4 cells of Fc alpha R(-) BW5147 T lymphoma cells used as parent cells for the establishment of the hybridoma. To study the effect of IgABF on antibody formation, culture filtrates of IgA-treated or untreated T2D4 cells were fractionated on IgA-Sepharose beads and were added to BALB/c spleen cells cultured with pokeweed mitogen. By use of a reverse plaque assay, it was shown that the IgA plaque-forming cell (PFC) response was suppressed by the acid eluate but not by the effluent of IgA-Sepharose beads incubated with the filtrates of IgA-treated T2D4 cell cultures. The suppression was IgA specific, because neither IgG nor IgM responses were suppressed by the eluate. As expected, there was no significant IgA suppressive activity in the acid eluates of the beads incubated with the culture filtrate of untreated T2D4 cells or IgA-treated BW5147 cells. IgA-specific suppressive activity proved to be due to IgA binding factor(s), because suppressive activity in the eluate was completely adsorbed by IgA-Sepharose but not by IgG- nor BSA-Sepharose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call