Abstract

Lymphocyte migration from blood into tissue depends on integrin-mediated adhesion to endothelium. Adhesion requires not only integrin ligands on the endothelium, but also activation signals because T-cell integrins cannot bind well until they are activated. The physiological 'triggers' for T-cell adhesion are unknown, but cytokines may be good candidates as they are released during inflammation and trigger adhesion in neutrophils and monocytes. We have identified a cytokine, macrophage inflammatory protein-1 beta (MIP-1 beta), that induces both chemotaxis and adhesion of T cells; MIP-1 beta is most effective at augmenting adhesion of CD8+ T cells to the vascular cell adhesion molecule VCAM-1. We reasoned that, as cytokines in vivo will be rapidly washed away, MIP-1 beta might be bound to endothelial surfaces and so induce adhesion in its immobilized form. Here we show that: (1) MIP-1 beta is present on lymph node endothelium; (2) immobilized MIP-1 beta induces binding of T cells to VCAM-1 in vitro. MIP-1 beta was immobilized by binding to proteoglycan: a conjugate of heparin with bovine serum albumin and cellular proteoglycan CD44 were both effective. We propose that MIP-1 beta and other cytokines with glycosaminoglycan-binding sites will bind to and be presented by endothelial proteoglycans to trigger adhesion selectively not only of lymphocyte subsets, but also of other cell types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.