Abstract

Members of the cadherin family have been implicated as growth regulators in multiple tumor types. Based on recent studies from our laboratory implicating T-cadherin expression in mouse brain tumorigenesis, we examined the role of T-cadherin in astrocytoma growth regulation. In this report, we show that T-cadherin expression increased during primary astrocyte physiologic growth arrest in response to contact inhibition and serum starvation in vitro, suggesting a function for T-cadherin in astrocyte growth regulation. We further demonstrate that transient and stable reexpression of T-cadherin in deficient C6 glioma cell lines results in growth suppression. In addition, T-cadherin-expressing C6 cell lines demonstrated increased homophilic cell aggregation, increased cell attachment to fibronectin, and decreased cell motility. Cell cycle flow cytometry demonstrated that T-cadherin reexpression resulted in G2 phase arrest, which was confirmed by mitotic index analysis. This growth arrest was p53 independent, as T-cadherin could still mediate growth suppression in p53(-/-) mouse embryonic fibroblasts. T-cadherin-expressing C6 cell lines exhibited increased p21(CIP1/WAF1), but not p27(Kip1), expression. Lastly, T-cadherin-mediated growth arrest was dependent on p21(CIP1/WAF1) expression and was eliminated in p21(CIP1/WAF1)-deficient fibroblasts. Collectively, these observations suggest a novel mechanism of growth regulation for T-cadherin involving p21(CIP1/WAF1) expression and G2 arrest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.