Abstract

According to the Anderson theorem, the critical temperature T c of a disordered superconductor is determined by the average density of states and does not change at the localization threshold. This statement is valid under assumption of a self-averaging order parameter, which can be violated in the strong localization region. Stimulating by statements on the essential increase of T c near the Anderson transition, we carried out the systematic investigation of possible violations of self-averaging. Strong deviations from the Anderson theorem are possible due to resonances at the quasi-discrete levels, resulting in localization of the order parameter at the atomic scale. This effect is determined by the properties of individual impurities and has no direct relation to the Anderson transition. In particular, we do not see any reasons to say on “fractal superconductivity” near the localization threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.