Abstract

A unique RNA-RNA interaction occurs between uncharged tRNA and the untranslated mRNA leader region of bacterial T box genes. The interaction results in activation of a transcriptional antitermination molecular switch (riboswitch) by stabilizing an antiterminator RNA element and precluding formation of a competing transcriptional terminator RNA element. The stabilization requires the base pairing of cognate tRNA acceptor end nucleotides with the antiterminator. To develop an appropriate model system for detailed structural studies and to screen for small molecule disruption of this important RNA-RNA interaction, steady-state fluorescence measurements of antiterminator model RNAs were used to determine the dissociation constant for model tRNA binding. The antiterminator-binding affinity for the full, minihelix, microhelix, and tetramer tRNA models differed by orders of magnitude. In addition, not all of the tRNA models exhibited functionally relevant binding specificity. The results from these experiments highlight the importance of looking beyond the level of known base pairing interactions when designing functionally relevant models of riboswitch systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.