Abstract

To accurately estimate the incidence of HOX11L2 expression, and determine the associated cytogenetic features, in T-cell acute lymphoblastic leukemia (T-ALL), the Groupe Français de Cytogénétique Hématologique (GFCH) carried out a retrospective study of both childhood and adult patients. In total, 364 patients were included (211 children </=15 years and 153 adults), and 67 (18.5%) [47 children (22.4%) and 20 adults (13.1%)] were shown to either harbor the t(5;14)q35;q32) translocation or express the HOX11L2 gene or both. Most of the common hematological parameters did not show significant differences within positive and negative populations, whereas the incidence of CD1a+/CD10+ and cytoplasmic CD3+ patients was significantly higher in positive than in negative children. Out of the 63 positive patients investigated by conventional cytogenetics, 32 exhibited normal karyotype, whereas the others 31 showed clonal chromosome abnormalities, which did not include classical T-ALL specific translocations. Involvement of the RANBP17/HOX11L2 locus was ascertained by fluorescence in situ hybridization in six variant or alternative (three-way translocation or cytogenetic partner other than 14q32) translocations out of the 223 patients. Our results also show that HOX11L2 expression essentially occurs as a result of a 5q35 rearrangement, but is not associated with another identified T-ALL specific recurrent genetic abnormality, such as SIL-TAL fusion or HOX11 expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.