Abstract

The relaxation of a nondegenerate two-level quantum system linearly and off-diagonally coupled to a thermal bath of quantum-mechanical harmonic oscillators is studied. The population and phase relaxation times, T1 and T2, are calculated to fourth order in the system/bath interaction. Focus is on a specific model of the bath spectral density that is both Ohmic (proportional to frequency at low frequency) and Lorentzian, and which has the property that, in the semiclassical or high-temperature limit, it reproduces the stochastic model studied previously by Budimir and Skinner [J. Stat. Phys. 49, 1029 (1987)]. For this fully quantum-mechanical model, it is found that under certain conditions the standard inequality, T2≤2T1, is violated, demonstrating that this unusual result, which was originally derived from the (infinite-temperature) stochastic model, is valid at finite temperature as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.