Abstract

During the past decade, phase-transition phenomena in the random 3-satisfiability ( 3 -SAT) problem has been intensively studied by statistical physics methods. In this work, we study the random 3 -SAT problem by the mean-field first-step replica-symmetry-broken cavity theory at the limit of temperature T-->0 . The reweighting parameter y of the cavity theory is allowed to approach infinity together with the inverse temperature beta with fixed ratio r=ybeta . Focusing on the system's space of satisfiable configurations, we carry out extensive population dynamics simulations using the technique of importance sampling, and we obtain the entropy density s(r) and complexity Sigma(r) of zero-energy clusters at different r values. We demonstrate that the population dynamics may reach different fixed points with different types of initial conditions. By knowing the trends of s(r) and Sigma(r) with r , we can judge whether a certain type of initial condition is appropriate at a given r value. This work complements and confirms the results of several other very recent theoretical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.