Abstract
We present exact calculations of the zero-temperature partition function for the q-state Potts antiferromagnet (equivalently, the chromatic polynomial) for families of arbitrarily long strip graphs of the square and triangular lattices with width L y =4 and boundary conditions that are doubly periodic or doubly periodic with reversed orientation (i.e., of torus or Klein bottle type). These boundary conditions have the advantage of removing edge effects. In the limit of infinite length, we calculate the exponent of the entropy, W( q) and determine the continuous locus B where it is singular. We also give results for toroidal strips involving “crossing subgraphs”; these make possible a unified treatment of torus and Klein bottle boundary conditions and enable us to prove that for a given strip, the locus B is the same for these boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.