Abstract

In this paper, we consider half-space domains (semi-infinite in one of the dimensions) and strip domains (finite in one of the dimensions) in real Euclidean spaces of dimension at least 2. The Szegö reproducing kernel for the space of monogenic and square integrable functions on a strip domain is obtained in closed form as a monogenic single-periodic function, viz a monogenic cosecant. The relationship between the Szegö and Bergman kernel for monogenic functions in a strip domain is explicitated in the transversally Fourier transformed setting. This relationship is then generalised to the polymonogenic Bergman case. Finally, the half-space case is considered specifically and the simplifications are pointed out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.