Abstract

The β⁰-thalassemia/Hb-E causes a wide range of severe conditions. A high medical cost is incurred in severe cases. Thus, the prevention of new cases of β⁰-thalassemia/Hb-E is required. The aim of this study is to use the SYTO9 and SYBR GREEN1 high-resolution melting (HRM) analysis for prenatal diagnosis of β⁰-thalassemia/Hb-E. DNA samples were extracted from amniotic fluid or cord blood of 11 pregnancies whose fetuses were at risk for β-thalassemia/Hb-E. PCR products from multiplex amplification refractory mutation system PCR for the detection of β⁰-thalassemia mutations at codons 17(A>T), 41/42(-TCTT), and 71/72(+A) and from amplification refractory mutation system PCR for the detection of Hb-E were characterized by SYTO9 HRM analysis. Moreover, β⁰-thalassemia 3.5- kb deletion was detected using real-time PCR with SYBR GREEN1 HRM analysis. Seven of 11 fetuses (64%) were diagnosed as β⁰-thalassemia/Hb-E (4 fetuses with mutation at codon 17, 2 with mutation at codon 41/42, and 1 with 3.5- kb deletion). Results from HRM analysis were completely consistent with those from fetal blood samplings analyzed at the time of delivery or pregnancy termination using HPLC. Therefore, the HRM analysis is easy to use. It is simple, flexible, non-destructive and has superb sensitivity and specificity. This approach might facilitate the laboratory diagnosis and genetic counseling for regions with a high prevalence of β⁰-thalassemia/Hb-E.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.