Abstract
BackgroundHead and neck squamous cell carcinoma (HNSCC) are one of the most common types of head and neck cancer, and it is urgent to find effective treatment for advanced patients. Exploring developing and progressing mechanisms of HNSCC could provide a theoretical basis to find new therapeutic targets.MethodsIn our research, we performed a whole-gene expression profile microarray analysis to identify differential expression genes between squamous cell carcinoma cells and ΔNp63 alpha (ΔNp63α) knockdown cells. As a result, an important gene Synaptotagmin VII (SYT7) was screened out.ResultsSYT7 knockdown affected the proliferation, apoptosis and cell cycle of squamous cell carcinoma cells. The rescue experiment in vitro with ΔNp63α and SYT7 double knockdown resulted in partial reversion of ΔNp63α-induced phenotypes. This was also confirmed by experiments in vivo.ConclusionsTaken together, we found that ΔNp63α could inhibit the occurrence and progression of HNSCC throughout downregulating the expression of SYT7. Therefore, SYT7/ΔNp63α axis could be a potential therapeutic target for clinical treatment of HNSCC.
Highlights
Head and Neck Cancer (HNC) is one of the ten most common malignant tumors worldwide
Celigo assays demonstrated that overexpression of ΔNp63α could significantly suppress the proliferation of Head and neck squamous cell carcinoma (HNSCC) cells in vitro (Fig. 1A, B)
Flow cytometry was performed to the influence of overexpression of ΔNp63α on cell cycle and apoptosis
Summary
Head and Neck Cancer (HNC) is one of the ten most common malignant tumors worldwide. Head and neck squamous Cell Carcinoma (HNSCC) is the most common type of HNC, accounting for more than 90% of HNC. It is the sixth most common malignant tumor disease in the world [1, 2]. There are two thirds of HNSCC patients in developing countries. In China, HNSCC accounted for about 10% of the whole-body malignant tumors, and the trend of its incidence and fatality rate increased. Head and neck squamous cell carcinoma (HNSCC) are one of the most common types of head and neck cancer, and it is urgent to find effective treatment for advanced patients. Exploring developing and progressing mechanisms of HNSCC could provide a theoretical basis to find new therapeutic targets
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.