Abstract
Background and ObjectivesIn a significant portion of surgeries, blood pressure (BP) is often measured non-invasively in an intermittent manner. This practice has a risk of missing clinically relevant BP changes between two adjacent intermittent BP measurements. This study proposes a method to non-invasively estimate systolic blood pressure (SBP) with high accuracy in patients undergoing surgery. MethodsContinuous arterial BP, electrocardiography (ECG), and photoplethysmography (PPG) signals were acquired from 29 patients undergoing surgery. After extracting 9 features from the PPG and ECG signals, we dynamically selected features upon each intermittent measurement (every 10 min) of SBP based on feature robustness and the principle of correlation-based feature selection. Finally, multiple linear regression models were built to combine these features to estimate SBP every 30 s. ResultsCompared to the reference SBP, the proposed method achieved a mean of difference at 0.08 mmHg, a standard deviation of difference at 7.97 mmHg, and a correlation coefficient at 0.89 (p < 0.001). ConclusionsThis study demonstrates the feasibility of non-invasively estimating SBP every 30 s with high accuracy during surgery by using ECG, PPG, and intermittent SBP measurements every 10 min, which meets the standard of the Association for the Advancement of Medical Instrumentation. The proposed method has the potential to enhance BP monitoring in the operating room, improving patient outcomes and experiences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.