Abstract

Large investments by pharmaceutical companies in the development of new antineoplastic drugs have not been resulting in adequate advances of new therapies. Despite the introduction of new methods, technologies, translational medicine and bioinformatics, the usage of collected knowledge is unsatisfactory. In this paper, using examples of pancreatic ductal adenocarcinoma (PaC) and castrate-resistant prostate cancer (CRPC), we proposed a concept showing that, in order to improve applicability of current knowledge in oncology, the re-clustering of clinical and scientific data is crucial. Such an approach, based on systems oncology, would include bridging of data on biomarkers and pathways between different cancer types. Proposed concept would introduce a new matrix, which enables combining of already approved therapies between cancer types. Paper provides a (a) detailed analysis of similarities in mechanisms of etiology and progression between PaC and CRPC, (b) diabetes as common hallmark of both cancer types and (c) knowledge gaps and directions of future investigations. Proposed horizontal and vertical matrix in cancer profiling has potency to improve current antineoplastic therapy efficacy. Systems biology map using Systems Biology Graphical Notation Language is used for summarizing complex interactions and similarities of mechanisms in biology of PaC and CRPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.