Abstract

Restoring movement control after central nervous system injury requires reconnecting the brain and spinal motoneurons, and doing so with sufficient precision and strength to enable robust voluntary muscle recruitment. Whereas the connection between the upper motoneuron in motor cortex and alpha-motoneurons was thought to be the only important connection for normal motor function in humans, we know that a multiplicity of motor circuits are recruited during normal motor control. Multiplicity of functionally important motor circuits points to the myriad possibilities of intervention that restorative neurology can turn to for repairing motor systems connections to recover movement control after injury. New motor systems repair strategies in animal models and humans are tapping into distributed motor control functions of the spinal cord; neural activity-based approaches, especially for corticospinal tract repair; and circuit-selective activation approaches. I focus on studies harnessing activity-based therapeutic approaches to promote sprouting of spared corticospinal tract axons after injury and redirecting potentially maladaptive plasticity. I discuss that we can see on the near horizon, many different strategies for repairing motor systems connections after injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call