Abstract
A systems model of a laser-driven IFE power plant is being developed to assist in design trade-offs and optimization. The focus to date has been on modeling the fusion chamber, blanket and power conversion system. A self-consistent model has been developed to determine key chamber and thermal cycle parameters (e.g., chamber radius, structure and coolant temperatures, cycle efficiency, etc.) as a function of the target yield and pulse repetition rate. Temperature constraints on the tungsten armor, ferritic steel wall, and structure/coolant interface are included in evaluating the potential design space. Results are presented for a lithium cooled first wall coupled with a Brayton power cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.