Abstract

Genistein is a plant-derived isoflavone possessing various bioactivities to prevent aging, carcinogenesis, and neurodegenerative and inflammation diseases. As a typical complex flavonoid, its microbial production from sugar remains to be completed. Here, we use systems metabolic engineering stategies to design and develop a three-strain commensalistic Escherichia coli coculture that for the first time realized the de novo production of genistein. First, we reconstituted the naringenin module by screening and incorporating chalcone isomerase-like protein, an auxiliary component to rectify the chalcone synthase promiscuity. Furthermore, we devised and constructed the genistein module by N-terminal modifications of plant P450 enzyme 2-hydroxyisoflavanone synthase and cytochrome P450 enzyme reductase. When naringenin-producing strain was cocultivated with p-coumaric acid-overproducing strain (a phenylalanine-auxotroph), two-strain coculture worked as commensalism through a unidirectional nutrient flow, which favored the efficient production of naringenin with a titer of 206.5 mg/L from glucose. A three-strain commensalistic coculture was subsequently engineered, which produced the highest titer to date of 60.8 mg/L genistein from a glucose and glycerol mixture. The commensalistic coculture is a flexible and versatile platform for the production of flavonoids, indicating a promising future for production of complex natural products in engineered E. coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call