Abstract

Hand-in-hand with the availability of full genome sequences for eukaryotic model organisms and humans the demand for analysis of gene function on a system level has grown. In a process called RNA interference (RNAi) specific mRNA species can be degraded by introduction of double-stranded small interfering RNAs (siRNAs) that are complementary to the targeted transcript sequence. This enables the selective impairment of gene function. During the past decade RNAi has been exploited in many different eukaryotic cell types and model organisms. Large-scale and eventually genome-wide RNAi screens ablating gene functions in a systematic manner have delivered an overwhelming amount of data on the requirement of distinct gene products for major cellular pathways. A large part of the RNAi field is dedicated to disease states such as cancer or infection with the prospect of discovering pathways suitable for new therapeutic interventions. Here some of the major steps in the development of the RNAi technology will be outlined and exemplified with a focus on the progress made in the field of mammalian host-pathogen interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.