Abstract

Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

Highlights

  • Polycystic ovary syndrome (PCOS) occurs in 6–10% of reproductive age women by NIH diagnostic criteria, and is characterized by hyperandrogenism and oligo- or amenorrhea [1]

  • Twin studies have demonstrated that inheritance plays a significant role in PCOS, and recent genome wide association studies (GWAS) have implicated 11 susceptibility regions

  • We looked at DNA methylation and gene expression levels in these 11 loci in fat biopsies from women with and without PCOS

Read more

Summary

Introduction

Polycystic ovary syndrome (PCOS) occurs in 6–10% of reproductive age women by NIH diagnostic criteria, and is characterized by hyperandrogenism and oligo- or amenorrhea [1]. PCOS is a complex disorder with both genetic and environmental factors contributing to its pathophysiology. Two genome wide association studies (GWAS), carried out in Han Chinese populations, identified 15 risk SNPs from 11 loci (THADA, LHCGR, FSHR, C9orf, DENND1A, YAP1, RAB5B, INSR, TOX3, SUMO1P1, and HMGA2) [4, 5]. Six of these risk loci (THADA, LHCGR, FSHR, DENND1A, YAP1, INSR) have been replicated in Caucasian populations [6,7,8,9,10]. A genetic risk score based on SNPs not individually associated with PCOS was found to be significantly associated with PCOS in Caucasian subjects [10], suggesting that some or all of the variants identified in Chinese populations are likely risk variants in Caucasians

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.