Abstract
Within the framework of a systems approach, the design of a high performance stainless steel integrated processing/structure/property/performance relations with mechanistic computational models. Using multicomponent thermodynamic and diffusion software platforms, the models were integrated to design a carburizable, secondary-hardening, martensitic stainless steel for advanced gear and bearing applications. Prototype evaluation confirmed the predicted martensitic transformation temperature and the desired carburizing and tempering responses, achieving a case hardness of R c 64 in the secondary-hardened condition without case primary carbides. Comparison with a commercial carburizing stainless steel demonstrated the advantage of avoiding primary carbides to resist quench cracking associated with a martensitic start temperature gradient reversal. Based on anodic polarization measurements and salt-spray testing, the prototype composition exhibited superior corrosion resistance in comparison to the 440C stainless bearing steel, which has a significantly higher alloy Cr concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.