Abstract
Direct air capture (DAC) removes CO2 from the atmosphere and can therefore address sizable nonpoint sources emissions of CO2 such as those from transportation. We propose a five-step temperature vacuum swing adsorption process for direct air capture using solid adsorbents coated as films on monolithic contactors using steam as the stripping agent during desorption. We perform a modeling study and economic assessment for DAC using two metal organic frameworks, MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc), for which we have experimentally demonstrated film growth on monolith structures. The results indicate minimum energy requirements, and cost estimates are 0.145 MJ/mol-CO2 and $75–140/t-CO2 for MIL-101(Cr)-PEI-800, and 0.113 MJ/mol-CO2 and $60–190/t-CO2 for mmen-Mg2(dobpdc), respectively. The overall DAC cost is sensitive to adsorbent purchase cost and lifetime as well as cycle parameters such as adsorption and desorption times. We conclude that mmen-Mg2(dobpdc) has better performance compared to MIL-101(Cr)-...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.