Abstract

In this review article, we cover the recent developments in understanding the principles and the mechanisms by which microbial communities participating in methane consumption in natural environmental niches are assembled, and the physiological and biochemical mechanisms and regulators that allow efficient carbon transfer within the communities. We first give a brief overview of methanotrophy. We then describe the recent evidence on non-random assembly of bacterial communities that utilize carbon from methane, based on stable isotope probing experiments as well as on results from natural community manipulations followed by metagenomic analysis. We follow up by highlighting results from synthetic methanotophic community manipulations identifying the importance of a lanthanide switch that regulates alternative methanol dehydrogenase enzymes in these communities. We further expand on the recently uncovered significance of lanthanides in methylotrophy and review data on the biochemical properties of representatives of two different clades of lanthanide-dependent enzymes. We also provide an overview of the occurrence and the distribution of the lanthanide-dependent alcohol dehydrogenases in the bacterial domain, these data strongly suggesting significance of these metals beyond methylotrophy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call