Abstract

Tumorigenesis is closely and highly associated with developmental biology. The present study aimed to discover and identify marker proteins strongly associated with the occurrence and development of non‑small cell lung cancer (NSCLC) in humans and to provide new ideas for investigating lung cancer markers by combining biological analyses of embryonic development. We established primary cultures for samples of tumor and control tissues from 9patients with NSCLC and collected conditioned medium (CM). Subsequently, we used liquid chromatography and linear ion trap (LTQ) mass spectrometry to isolate and identify proteins in CM samples. Data mining of free proteins was conducted using the analogous analysis strategy in systems biology to obtain important lung cancer‑associated proteins (plasma markers). Proteins with significant plasma enrichment in lung cancer patients were detected via enzyme‑linked immunosorbent assay (ELISA). We identified 987high‑confidence proteins and established a primary database of free proteins associated with lung cancer. Furthermore, 511high‑confidence proteins were present in CM from primary tissue cultures from at least 2of the 9examined cases of lung cancer. Analysis using Gene Set Enrichment Analysis (GSEA) software revealed significant enrichment for 197proteins from the CM of lung cancer samples in maternal‑placental interface expression profiles for a mid‑term placenta with strong invasiveness relative to RNA expression profiles for a human full‑term placenta after delivery. ELISA results demonstrated that hypoxanthine phosphoribosyltransferase1 (HPRT1) was associated with worse rates of disease‑free survival (DFS) and overall survival (OS). The biological behaviors of embryonic implantation are similar to those of tumor invasion and metastasis, and the information obtained regarding developmental biology could facilitate the interpretation of tumor invasion and metastasis. Therefore, similar biological behaviors combined with analyses at different molecular levels from the perspective of systems biology will provide new ideas for tumor research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call