Abstract

Phase I oncology clinical trials often comprise a limited number of patients representing different disease subtypes who are divided into cohorts receiving treatment(s) at different dosing levels and schedules. Here, we leverage a previously developed quantitative systems pharmacology model of the anti-CD20/CD3 T-cell engaging bispecific antibody, mosunetuzumab, to account for different dosing regimens and patient heterogeneity in the phase I study to inform clinical dose/exposure-response relationships and to identify biological determinants of clinical response. We developed a novel workflow to generate digital twins for each patient, which together form a virtual population (VPOP) that represented variability in biological, pharmacological, and tumor-related parameters from the phase I trial. Simulations based on the VPOP predict that an increase in mosunetuzumab exposure increases the proportion of digital twins with at least a 50% reduction in tumor size by day 42. Simulations also predict a left-shift of the exposure-response in patients diagnosed with indolent compared to aggressive non-Hodgkin's lymphoma (NHL) subtype; this increased sensitivity in indolent NHL was attributed to the lower inferred values of tumor proliferation rate and baseline T-cell infiltration in the corresponding digital twins. Notably, the inferred digital twin parameters from clinical responders and nonresponders show that the potential biological difference that can influence response include tumor parameters (tumor size, proliferation rate, and baseline T-cell infiltration) and parameters defining the effect of mosunetuzumab on T-cell activation and B-cell killing. Finally, the model simulations suggest intratumor expansion of pre-existing T-cells, rather than an influx of systemically expanded T-cells, underlies the antitumor activity of mosunetuzumab.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.