Abstract

To quantifying the interdependency within the regulatory environment governing human subject research, including Institutional Review Boards (IRBs), federally mandated Medicare coverage analysis and contract negotiations. Over 8000 IRB, coverage analysis and contract applications initiated between 2013 and 2016 were analyzed using traditional and machine learning analytics for a quality improvement effort to improve the time required to authorize the start of human research studies. Staffing ratios, study characteristics such as the number of arms, source of funding and number and type of ancillary reviews significantly influenced the timelines. Using key variables, a predictive algorithm identified outliers for a workflow distinct from the standard process. Improved communication between regulatory units, integration of common functions, and education outreach improved the regulatory approval process. Understanding and improving the interdependencies between IRB, coverage analysis and contract negotiation offices requires a systems approach and might benefit from predictive analytics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.