Abstract

Fast-growing forest plantations are sustainable feedstocks of plant biomass that can serve as alternatives to fossil carbon resources for materials, chemicals, and energy. Their ability to efficiently harvest light energy and carbon from the atmosphere and sequester this into metabolic precursors for lignocellulosic biopolymers and a wide range of plant specialized metabolites make them excellent biochemical production platforms and living biorefineries. Their large sizes have facilitated multi-omics analyses and systems modeling of key biological processes such as lignin biosynthesis in trees. High-throughput ‘omics’ approaches have also been applied in segregating tree populations where genetic variation creates abundant genetic perturbations of system components allowing construction of systems genetics models linking genes and pathways to complex trait variation. With this information in hand, it is now possible to start using synthetic biology and genome editing techniques in a bioengineering approach based on a deeper understanding and rational design of biological parts, devices, and integrated systems. However, the complexity of the biology and interacting components will require investment in big data informatics, machine learning, and intuitive visualization to fully explore multi-dimensional patterns and identify emergent properties of biological systems. Predictive systems models could be tested rapidly through high-throughput synthetic biology approaches and multigene editing. Such a bioengineering paradigm, together with accelerated genomic breeding, will be crucial for the development of a new generation of woody biorefinery crops.

Highlights

  • Compared to herbaceous plants, forest trees afford numerous of advantages to plant biologists interested in studying growth and development

  • We present a brief review of recent progress and our perspective on the application of systems biology approaches to understand complex tree biology, from molecular to organismal level crucial for sustainable production of woody biomass

  • We propose a bioengineering paradigm based on rational design, drawing on systems-level understanding of biological processes – and the application of synthetic biology and genome editing technologies – to engineer such processes in combination with accelerated, genome-assisted breeding of forest trees

Read more

Summary

Introduction

Forest trees afford numerous of advantages to plant biologists interested in studying growth and development. Can synthetic biology incorporate existing genetic components (biological “parts”) across the three Domains of life, but chemical gene and whole-genome synthesis, directed evolution, model-informed protein engineering, and synthetic regulatory machinery design enable the creation of xenobiological systems.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call