Abstract

Over 50 million people have been infected with the SARS-CoV-2 virus, while around 1 million have died due to COVID-19 disease progression. COVID-19 presents flu-like symptoms that can escalate, in about 7–10 days from onset, into a cytokine storm causing respiratory failure and death. Although social distancing reduces transmissibility, COVID-19 vaccines and therapeutics are essential to regain socioeconomic normalcy. Even if effective and safe vaccines are found, pharmacological interventions are still needed to limit disease severity and mortality. Integrating current knowledge and drug candidates (approved drugs for repositioning among >35 candidates) undergoing clinical studies (>3000 registered in ClinicalTrials.gov), we employed Systems Pharmacology approaches to project how antivirals and immunoregulatory agents could be optimally evaluated for use. Antivirals are likely to be effective only at the early stage of infection, soon after exposure and before hospitalization, while immunomodulatory agents should be effective in the later-stage cytokine storm. As current antiviral candidates are administered in hospitals over 5–7 days, a long-acting combination that targets multiple SARS-CoV-2 lifecycle steps may provide a long-lasting, single-dose treatment in outpatient settings. Long-acting therapeutics may still be needed even when vaccines become available as vaccines are likely to be approved based on a 50% efficacy target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.