Abstract
BackgroundLipid accumulation by oleaginous microorganisms is of great scientific interest and biotechnological potential. While nitrogen limitation has been routinely employed, low-cost raw materials usually contain rich nitrogenous components, thus preventing from efficient lipid production. Inorganic phosphate (Pi) limitation has been found sufficient to promote conversion of sugars into lipids, yet the molecular basis of cellular response to Pi limitation and concurrent lipid accumulation remains elusive.ResultsHere, we performed multi-omic analyses of the oleaginous yeast Rhodosporidium toruloides to shield lights on Pi-limitation-induced lipid accumulation. Samples were prepared under Pi-limited as well as Pi-repleted chemostat conditions, and subjected to analysis at the transcriptomic, proteomic, and metabolomic levels. In total, 7970 genes, 4212 proteins, and 123 metabolites were identified. Results showed that Pi limitation facilitates up-regulation of Pi-associated metabolism, RNA degradation, and triacylglycerol biosynthesis while down-regulation of ribosome biosynthesis and tricarboxylic acid cycle. Pi limitation leads to dephosphorylation of adenosine monophosphate and the allosteric activator of isocitrate dehydrogenase key to lipid biosynthesis. It was found that NADPH, the key cofactor for fatty acid biosynthesis, is limited due to reduced flux through the pentose phosphate pathway and transhydrogenation cycle and that this can be overcome by over-expression of an endogenous malic enzyme. These phenomena are found distinctive from those under nitrogen limitation.ConclusionsOur data suggest that Pi limitation activates Pi-related metabolism, RNA degradation, and TAG biosynthesis while inhibits ribosome biosynthesis and TCA cycle, leading to enhanced carbon fluxes into lipids. The information greatly enriches our understanding on microbial oleaginicity and Pi-related metabolism. Importantly, systems data may facilitate designing advanced cell factories for production of lipids and related oleochemicals.
Highlights
Lipid accumulation by oleaginous microorganisms is of great scientific interest and biotechnological potential
Our results demonstrated that inorganic phosphate (Pi)-limitation facilitates up-regulation of phosphate metabolism, RNA degradation, and TAG biosynthesis, while downregulation of ribosome biosynthesis and tricarboxylic acid (TCA) cycle, leading to enhanced carbon flux for lipids
Lipid production under Pi‐replete and Pi‐limited chemostat conditions To prepare reliable samples representing cellular performance under Pi-replete and Pi-limited conditions, we grew chemostat cultures of R. toruloides cells using minimal medium with 27 g/l glucose but different Pi loadings to ensure the initial carbon-to-phosphorus molar ratio (C/P) of 63 and 2164, and samples were coded as F3 and P0, respectively
Summary
Lipid accumulation by oleaginous microorganisms is of great scientific interest and biotechnological potential. While nitrogen limitation has been routinely employed, low-cost raw materials usually contain rich nitrogenous components, preventing from efficient lipid production. Inorganic phosphate (Pi) limitation has been found sufficient to promote conversion of sugars into lipids, yet the molecular basis of cellular response to Pi limitation and concurrent lipid accumulation remains elusive. It should be noted that low-cost raw materials usually contain rich nitrogenous components, preventing from efficient lipid production. Limitation of other nutrients such as inorganic phosphate (Pi), sulfate, or iron has been known to facilitate lipid production [6,7,8]. The molecular basis of cellular responses to Pi-limitation and concurrent lipid accumulation by oleaginous species remains elusive
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.