Abstract

The main objective of this study is to investigate the feasibility and costs of ionic liquid (IL)-based CO2 capture systems at pulverized coal-fired (PC) power plants. The IL selected for this assessment is trihexyl- (tetradecyl)phosphonium 2-cyanopyrrolide ([P66614][2-CNpyr]), achieving a 1:1 and reversible chemical reaction between [2-CNpyr]− and CO2. A multi-stage equilibrium-based modeling framework is established to simulate the adiabatic absorption process, whereas a single-stage flash drum in equilibrium is employed for the stripping process. The performance model is linked to an engineering-economic model that estimates the capital cost, annual operating and maintenance (O&M) costs, and total levelized annual cost. The technical and cost models are applied to estimate the cost of CO2 captured by an IL-based CCS system. The preliminary results show that for 90% CO2 capture, the capture cost would be higher than the U.S. Department of Energy's target at $40 per metric ton of CO2 captured for new generation technologies, mainly due to a large capital cost. However, current process designs are not yet optimized. Based on the cost of CO2 captured, the most cost-effective capture cost is found to be at a removal efficiency of about 85% for CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.