Abstract
The proteolytic enzyme thrombin activates its receptor by cleavage of a peptide from the extracellular N-terminus. The newly generated N-terminus acts as a tethered ligand to activate the receptor. Receptor-mediated cellular effects of thrombin can be mimicked by synthetic peptides, which correspond to the amino acid sequence of the newly formed N-terminus. The aim of the present study was to investigate vascular effects of thrombin and the thrombin receptor activating peptide (TRAP: SFLLRN) in vitro and in vivo in rats. In precontracted rat aortic rings, both thrombin (0.3, 1, 3 U/ml) and TRAP (1, 3, 10, 20, 40 μM) induced endothelium-dependent relaxant responses. In anaesthetized rats, the mean arterial blood pressure (MAP) was measured continuously in the carotid artery by a pressure transducer. Thrombin and TRAP were administered as intravenous bolus injection via the femoral vein. Thrombin at doses of 3–100 U/kg, as well as TRAP at doses of 0.1–0.6 mg/kg iv, caused a reversible decrease in MAP. Administration of TRAP at doses of 0.3 and 0.6 mg/kg led to a triphasic response in most of the animals treated (50% and 75%, respectively), i.e. a short drop of MAP was followed by an increase and finally a longer lasting decrease in MAP. Pretreatment with the nitric oxide (NO)-synthase inhibitor N G-nitro- l-arginine-methylester ( l-NAME) suppressed the dose-dependent vasodilator effects of thrombin. Heparin and hirudin also inhibited the hypotensive response to thrombin. The TRAP-induced triphasic reaction on MAP was not affected by the serotonin antagonists ketanserin and tropisetron, as well as the aminopeptidase inhibitor amastatin. Pretreatment with l-NAME led to an inhibition of hypotension induced by TRAP at 0.1 mg/kg, as well as of the initial transient fall in blood pressure at doses of 0.3 and 0.6 mg/kg. The studies suggest that the thrombin- and TRAP-induced vasodilation in vitro and in vivo is in part due to the release of endothelial NO. In the blood pressure response to TRAP, additional effects seem to be involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.