Abstract
Although the peripheral vascular effects of epinephrine have been characterized in animal models, similar studies have not been carried out in man. To determine the vascular effects of epinephrine the systemic circuit must be conceptually and surgically opened to allow for independent control of flow and pressure. This unique situation exists in man only while on total cardiopulmonary bypass with an external reservoir and pump interposed between the right atrium and the aorta. Under these conditions, peripheral vascular compliance, arteriolar and venous resistance, and the systemic time constant (a measure of the drainage characteristics of the vascular bed, in units of time) can be determined directly. Nine anesthetized patients undergoing normothermic cardiopulmonary bypass were studied before and during epinephrine infusion (5 μg/kg/min) after the aorta was cross-clamped and the heart had been isolated from the rest of the peripheral circulation. At constant blood flow epinephrine infusion increased blood pressure and reservoir volume (effectively decreasing blood volume) by an average of 360 ml. Although systemic vascular compliance decreased (due to venoconstriction), resistance to venous return decreased. Analysis of transient blood volume changes after a step change in right atrial pressure at constant blood flow revealed that blood was effectively draining from two vascular compartments with different time constants, as previously demonstrated in animal experiments. Epinephrine caused redistribution of blood flow away from the compartment with the longest time constant by constricting the arterioles leading to it. This accounts for the major increase in venous return and is almost entirely the mechanism of increased cardiac output in the normal individual after its administration, independent of its effects on the heart. In an attempt to localize the long and short time constant vascular compartments, three normal volunteers were studied. Thallium-201 whole body imaging at rest and after maximal treadmill exercise showed redistribution of blood flow away from the mesenteric bed and towards the muscle compartments. Although two similar compartment models of the circulation have been suggested by others, to our knowledge this type of analysis has not been carried out in man.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.