Abstract
Rats expressing a transgenic polycystic kidney disease (PKD) gene develop photoreceptor degeneration and subsequent vasoregression, as well as activation of retinal microglia and macroglia. To target the whole neuroglialvascular unit, neuro- and vasoprotective Erythropoietin (EPO) was intraperitoneally injected into four –week old male heterozygous PKD rats three times a week at a dose of 256 IU/kg body weight. For comparison EPO-like peptide, lacking unwanted side effects of EPO treatment, was given five times a week at a dose of 10 µg/kg body weight. Matched EPO treated Sprague Dawley and water-injected PKD rats were held as controls. After four weeks of treatment the animals were sacrificed and analysis of the neurovascular morphology, glial cell activity and pAkt localization was performed. The number of endothelial cells and pericytes did not change after treatment with EPO or EPO-like peptide. There was a nonsignificant reduction of migrating pericytes by 23% and 49%, respectively. Formation of acellular capillaries was significantly reduced by 49% (p<0.001) or 40% (p<0.05). EPO-treatment protected against thinning of the central retina by 10% (p<0.05), a composite of an increase of the outer nuclear layer by 12% (p<0.01) and in the outer segments of photoreceptors by 26% (p<0.001). Quantification of cell nuclei revealed no difference. Microglial activity, shown by gene expression of CD74, decreased by 67% (p<0.01) after EPO and 36% (n.s.) after EPO-like peptide treatment. In conclusion, EPO safeguards the neuroglialvascular unit in a model of retinal neurodegeneration and secondary vasoregression. This finding strengthens EPO in its protective capability for the whole neuroglialvascular unit.
Highlights
Rats expressing a transgenic polycystic kidney disease (PKD) gene develop heavy neurodegeneration of photoreceptors due to ciliopathy [1]
There was a significant reduction in the number of endothelial cells by 9% (p,0.001) in homozygous PKD rats compared to heterozygous PKD rats
In the same way EPO-like peptide reduced the formation of acellular capillaries significantly by 63% (p,0.05). Both treatments showed no difference in absolute number of endothelial cells or pericytes
Summary
Rats expressing a transgenic polycystic kidney disease (PKD) gene develop heavy neurodegeneration of photoreceptors due to ciliopathy [1]. This neurodegeneration starts at the first month and is followed by an activation of glial cells [2,3]. At the second month of age PKD rats develop an exponential increase in formation of acellular capillaries. This vasoregression is enhanced in the deep vascular layer in comparison to the superficial vascular layer, indicating an influence of activated microglia to vasoregression. In summary the PKD rat develops a damaged neuroglialvascular unit due to transgenic neurodegeneration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.