Abstract
Little is known about the molecular processes involved in the phloem response to aphid feeding. We investigated molecular responses to aphid feeding on celery (Apium graveolenscv. Dulce) plants infested with the aphid Myzus persicae, as a means of identifying changes in phloem function. We used celery as our model species as it is easy to separate the phloem from the surrounding tissues in the petioles of mature leaves of this species. We generated a total of 1187 expressed sequence tags (ESTs), corresponding to 891 non-redundant genes. We analysed these ESTs in silico after cDNA macroarray hybridisation. Aphid feeding led to significant increase in RNA accumulation for 126 different genes. Different patterns of deregulation were observed, including transitory or stable induction 3 or 7 days after infestation. The genes affected belonged to various functional categories and were induced systemically in the phloem after infestation. In particular, genes involved in cell wall modification, water transport, vitamin biosynthesis, photosynthesis, carbon assimilation and nitrogen and carbon mobilisation were up-regulated in the phloem. Further analysis of the response in the phloem or xylem suggested that a component of the response was developed more specifically in the phloem. However, this component was different from the stress responses in the phloem driven by pathogen infection. Our results indicate that the phloem is actively involved in multiple adjustments, recruiting metabolic pathways and in structural changes far from aphid feeding sites. However, they also suggest that the phloem displays specific mechanisms that may not be induced in other tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.