Abstract

This review provides balanced analysis of the advances in systemic regulation of young and old tissue stem cells and suggests strategies for accelerating development of therapies to broadly combat age-related tissue degenerative pathologies. Many highlighted recent reports on systemic tissue rejuvenation combine parabiosis with a "silver bullet" putatively responsible for the positive effects. Attempts to unify these papers reflect the excitement about this experimental approach and add value in reproducing previous work. At the same time, defined molecular approaches, which are "beyond parabiosis" for the rejuvenation of multiple old organs represent progress toward attenuating or even reversing human tissue aging.

Highlights

  • How long has it been since we knew that age-imposed changes in the circulatory milieu are to blame for the progressive attrition of organs and degenerative disorders that invariably accompany human aging? Some say, we've known for millennia, from the Ancient Greeks and Medieval stories of vampires

  • Stem cell regenerative capacity persists throughout life, but sadly, the biochemical cues regulating organ stem cells change with age in ways that preclude productive regenerative responses, causing the abandonment of tissue maintenance and repair in the old [3]

  • Numerous studies have demonstrated that experimental youthful re-calibration of specific biochemical cues will quickly rescue the effective regenerative capacity of old stem cells in vivo, demonstrating that old stem cells can for all practical purposes maintain old organs [4, 11,12,13,14]

Read more

Summary

Introduction

How long has it been since we knew that age-imposed changes in the circulatory milieu are to blame for the progressive attrition of organs and degenerative disorders that invariably accompany human aging? Some say, we've known for millennia, from the Ancient Greeks and Medieval stories of vampires. Another answer is that it has been 10 years since the paradigm-shifting observations that in heterochronic parabiosis, the young systemic milieu rapidly and broadly rejuvenates organ stem cells in muscle, brain/hippocampus and liver, while the old systemic milieu rapidly and broadly ages myogenesis, liver regeneration and neurogenesis, with the responsible biochemical pathways being re-set to their young or old states ([1], and Figure 1).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.