Abstract

It was the aim of this study to investigate the potential of stomach targeted delivery systems for systemic peptide administration using salmon calcitonin as a model drug. Chitosan was modified by the immobilization of thiol groups utilizing 2-iminothiolane in order to obtain a chitosan–4-thiobutylamidine conjugate (chitosan–TBA). Furthermore, a chitosan–pepstatin A conjugate was synthesized by a carbodiimide mediated linkage of the pepsin inhibitor to the polymer. The protective effect of this novel conjugate for calcitonin towards pepsin was evaluated in vitro. Minitablets (5 mg) were generated by direct compression of calcitonin, chitosan, chitosan–TBA, chitosan–pepstatin A conjugate and glutathione (GSH), respectively (A, 1:0:69:20:10; B, 1:79:0:20:0; C, 1:99:0:0:0). The drug release was investigated in an artificial gastric fluid. Biofeedback studies were performed in rats by determining the decrease in plasma calcium level after oral administration. The novel chitosan–pepstatin A conjugate displayed 291±58 nmol inhibitor per gram polymer (mean±S.D., n=5). The chitosan–inhibitor conjugate showed a very strong protective effect for salmon calcitonin towards pepsinic degradation. A controlled drug release was provided by all tested dosage forms—A, B and C. Dosage form B led only to a slight reduction of the plasma calcium level, displaying a pharmacological efficacy versus i.v. injection of 0.41%, while dosage form C did not lead to any significant effect. In contrast, dosage form A led to a decrease in the plasma calcium level of 10% for at least 12 h. The pharmacological efficacy of this formulation was determined to be 1.35%. The study suggests that stomach targeted oral delivery might be a promising novel approach for noninvasive systemic peptide administration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call