Abstract

We investigated the dose dependence of the role of nociceptors in opioid-induced side-effects, hyperalgesia and pain chronification, in the rat. Systemic morphine produced a dose-dependent biphasic change in mechanical nociceptive threshold. At lower doses (0.003–0.03 mg/kg, s.c.) morphine induced mechanical hyperalgesia, while higher doses (1–10 mg/kg, s.c.) induced analgesia. Intrathecal (i.t.) oligodeoxynucleotide (ODN) antisense to mu-opioid receptor (MOR) mRNA, attenuated both hyperalgesia and analgesia. 5 days after systemic morphine (0.03–10 mg/kg s.c.), mechanical hyperalgesia produced by intradermal (i.d.) prostaglandin E2 (PGE2) was prolonged, indicating hyperalgesic priming at the peripheral terminal of the nociceptor. The hyperalgesia induced by i.t. PGE2 (400 ng/10 µl), in groups that received 0.03 (that induced hyperalgesia) or 3 mg/kg (that induced analgesia) morphine, was also prolonged, indicating priming at the central terminal of the nociceptor. The prolongation of the hyperalgesia induced by i.d. or i.t. PGE2, in rats previously treated with either a hyperalgesic (0.03 mg/kg, s.c.) or analgesic (3 mg/kg, s.c.) dose, was reversed by i.d. or i.t. injection of the protein translation inhibitor cordycepin (1 µg), indicative of Type I priming at both terminals. Although pretreatment with MOR antisense had no effect on priming induced by 0.03 mg/kg morphine, it completely prevented priming by 3 mg/kg morphine, in both terminals. Thus, the induction of hyperalgesia, but not priming, by low-dose morphine, is MOR-dependent. In contrast, induction of both hyperalgesia and priming by high-dose morphine is MOR-dependent. The receptor at which low-dose morphine acts to produce priming remains to be established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call