Abstract

The goal of this study was to evaluate hepatocyte-specific gene editing, via systemic administration of hyaluronic acid (HA)-based nanoparticles in naïve CD-1 mice. Using HA-poly(ethylene imine) (HA-PEI) and HA-PEI-mannose nanoparticles with differential mannose density (1X and 2X), we have evaluated systemic biodistribution and hepatocyte-specific delivery using IVIS imaging and flow cytometry. Additionally, we have investigated hepatocyte-specific delivery and transfection of CRISPR/Cas9 gene editing plasmid and eGFP gene payload to integrate at the Rosa26 locus. IVIS imaging showed uptake of HA-PEI nanoparticles primarily by the liver, and with addition of mannose at different concentrations, the nanoparticles showed increased uptake in both the liver and spleen. HA-PEI-mannose nanoparticles showed 55–65% uptake by hepatocytes, along with uptake by resident macrophage regardless of the mannose concentration. One of two gRNA targets showed 15% genome editing and obtained similar results for all three nanoparticle formulations. Cells positive for our gene payload were greatest with HA-PEI-mannose-1X nanoparticles where 16.2% of cells were GFP positive. The results were encouraging as proof of concept for the development of a non-viral biodegradable and biocompatible polymeric delivery system for gene editing specifically targeting hepatocytes upon systemic administration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.